A single frizzled protein has a dual function in tissue polarity.
نویسندگان
چکیده
The Drosophila frizzled (fz) gene is required for the development of normal tissue polarity in the epidermis. Genetic epistasis experiments argue that fz is at the top of a regulatory hierarchy that controls the subcellular site for prehair initiation within the cells of the pupal wing (Wong and Adler, 1993; J. Cell Biol. 123, 209-221). Genetic mosaic experiments indicate that fz has both cell autonomous and cell non-autonomous functions that are separately mutable (Vinson and Adler, 1987; Nature 329, 549-551). Two species of fz mRNA have been identified, raising the question as to whether the two functions are provided by a single protein or by two separate protein species. We generated transgenic flies that express each of these mRNAs under the control of an hsp70 promoter. Only one of the transgenes (hsfzI) showed any fz activity. At 29 degrees C, the hsfzI transgene provided almost complete rescue of a null fz mutation, indicating that the protein encoded by this cDNA can fulfill both fz functions. Overexpression of the hsfzI transgene resulted in two distinct tissue polarity phenotypes depending on the time of heat shock.
منابع مشابه
Mutations in the cadherin superfamily member gene dachsous cause a tissue polarity phenotype by altering frizzled signaling.
The adult cuticular wing of Drosophila is covered by an array of distally pointing hairs that reveals the planar polarity of the wing. We report here that mutations in dachsous disrupt this regular pattern, and do so by affecting frizzled signaling. dachsous encodes a large membrane protein that contains many cadherin domains and dachsous mutations cause deformed body parts. We found that mutat...
متن کاملA Dual Function for Prickle in Regulating Frizzled Stability during Feedback-Dependent Amplification of Planar Polarity
The core planar polarity pathway coordinates epithelial cell polarity during animal development, and loss of its activity gives rise to a range of defects, from aberrant morphogenetic cell movements to failure to correctly orient structures, such as hairs and cilia. The core pathway functions via a mechanism involving segregation of its protein components to opposite cells ends, where they form...
متن کاملStructure–Function Dissection of the Frizzled Receptor in Drosophila melanogaster Suggests Different Mechanisms of Action in Planar Polarity and Canonical Wnt Signaling
Members of the Frizzled family of sevenpass transmembrane receptors signal via the canonical Wnt pathway and also via noncanonical pathways of which the best characterized is the planar polarity pathway. Activation of both canonical and planar polarity signaling requires interaction between Frizzled receptors and cytoplasmic proteins of the Dishevelled family; however, there has been some dispu...
متن کاملThe grainy head transcription factor is essential for the function of the frizzled pathway in the Drosophila wing
The Drosophila wing is covered by an array of distally pointing hairs. This tissue planar polarity is regulated by the frizzled pathway. We have found that the function of the grainy head transcription factor is essential for the function of the frizzled pathway. grainy head mutant cells fail to localize planar polarity proteins at either the proximal or distal sides of wing cells and produce m...
متن کاملDishevelled is a component of the frizzled signaling pathway in Drosophila.
The tissue polarity genes in Drosophila are required to coordinate cell polarity within the plane of the epidermis. Evidence to date suggests that these genes may encode components of a novel signal transduction pathway. Three of the genes, frizzled (fz), dishevelled (dsh), and prickle (pk) share a similar tissue polarity phenotype, suggesting that they function together in a single process. ds...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 120 7 شماره
صفحات -
تاریخ انتشار 1994